Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.

Identifieur interne : 000043 ( Main/Exploration ); précédent : 000042; suivant : 000044

TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.

Auteurs : Brittney N. Nguyen [États-Unis] ; Alfredo Chávez-Arroyo [États-Unis] ; Mandy I. Cheng [États-Unis] ; Maria Krasilnikov [États-Unis] ; Alexander Louie [États-Unis] ; Daniel A. Portnoy [États-Unis]

Source :

RBID : pubmed:32634175

Descripteurs français

English descriptors

Abstract

Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.

DOI: 10.1371/journal.ppat.1008622
PubMed: 32634175
PubMed Central: PMC7340287


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.</title>
<author>
<name sortKey="Nguyen, Brittney N" sort="Nguyen, Brittney N" uniqKey="Nguyen B" first="Brittney N" last="Nguyen">Brittney N. Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chavez Arroyo, Alfredo" sort="Chavez Arroyo, Alfredo" uniqKey="Chavez Arroyo A" first="Alfredo" last="Chávez-Arroyo">Alfredo Chávez-Arroyo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Mandy I" sort="Cheng, Mandy I" uniqKey="Cheng M" first="Mandy I" last="Cheng">Mandy I. Cheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krasilnikov, Maria" sort="Krasilnikov, Maria" uniqKey="Krasilnikov M" first="Maria" last="Krasilnikov">Maria Krasilnikov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Louie, Alexander" sort="Louie, Alexander" uniqKey="Louie A" first="Alexander" last="Louie">Alexander Louie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Portnoy, Daniel A" sort="Portnoy, Daniel A" uniqKey="Portnoy D" first="Daniel A" last="Portnoy">Daniel A. Portnoy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32634175</idno>
<idno type="pmid">32634175</idno>
<idno type="doi">10.1371/journal.ppat.1008622</idno>
<idno type="pmc">PMC7340287</idno>
<idno type="wicri:Area/Main/Corpus">000094</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000094</idno>
<idno type="wicri:Area/Main/Curation">000094</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000094</idno>
<idno type="wicri:Area/Main/Exploration">000094</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.</title>
<author>
<name sortKey="Nguyen, Brittney N" sort="Nguyen, Brittney N" uniqKey="Nguyen B" first="Brittney N" last="Nguyen">Brittney N. Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chavez Arroyo, Alfredo" sort="Chavez Arroyo, Alfredo" uniqKey="Chavez Arroyo A" first="Alfredo" last="Chávez-Arroyo">Alfredo Chávez-Arroyo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Mandy I" sort="Cheng, Mandy I" uniqKey="Cheng M" first="Mandy I" last="Cheng">Mandy I. Cheng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krasilnikov, Maria" sort="Krasilnikov, Maria" uniqKey="Krasilnikov M" first="Maria" last="Krasilnikov">Maria Krasilnikov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Louie, Alexander" sort="Louie, Alexander" uniqKey="Louie A" first="Alexander" last="Louie">Alexander Louie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Portnoy, Daniel A" sort="Portnoy, Daniel A" uniqKey="Portnoy D" first="Daniel A" last="Portnoy">Daniel A. Portnoy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Endosomes (immunology)</term>
<term>Endosomes (metabolism)</term>
<term>Immune Tolerance (immunology)</term>
<term>Interleukin-10 (immunology)</term>
<term>Interleukin-10 (metabolism)</term>
<term>Listeria monocytogenes (immunology)</term>
<term>Listeriosis (immunology)</term>
<term>Listeriosis (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Phagosomes (immunology)</term>
<term>Phagosomes (metabolism)</term>
<term>Toll-Like Receptor 2 (immunology)</term>
<term>Toll-Like Receptor 2 (metabolism)</term>
<term>Toll-Like Receptors (immunology)</term>
<term>Toll-Like Receptors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Endosomes (immunologie)</term>
<term>Endosomes (métabolisme)</term>
<term>Infections à Listeria (immunologie)</term>
<term>Infections à Listeria (métabolisme)</term>
<term>Interleukine-10 (immunologie)</term>
<term>Interleukine-10 (métabolisme)</term>
<term>Listeria monocytogenes (immunologie)</term>
<term>Phagosomes (immunologie)</term>
<term>Phagosomes (métabolisme)</term>
<term>Récepteur de type Toll-2 (immunologie)</term>
<term>Récepteur de type Toll-2 (métabolisme)</term>
<term>Récepteurs de type Toll (immunologie)</term>
<term>Récepteurs de type Toll (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Tolérance immunitaire (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Interleukin-10</term>
<term>Toll-Like Receptor 2</term>
<term>Toll-Like Receptors</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Endosomes</term>
<term>Infections à Listeria</term>
<term>Interleukine-10</term>
<term>Listeria monocytogenes</term>
<term>Phagosomes</term>
<term>Récepteur de type Toll-2</term>
<term>Récepteurs de type Toll</term>
<term>Tolérance immunitaire</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Endosomes</term>
<term>Immune Tolerance</term>
<term>Listeria monocytogenes</term>
<term>Listeriosis</term>
<term>Phagosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Interleukin-10</term>
<term>Listeriosis</term>
<term>Phagosomes</term>
<term>Toll-Like Receptor 2</term>
<term>Toll-Like Receptors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Endosomes</term>
<term>Infections à Listeria</term>
<term>Interleukine-10</term>
<term>Phagosomes</term>
<term>Récepteur de type Toll-2</term>
<term>Récepteurs de type Toll</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32634175</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008622</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1008622</ELocationID>
<Abstract>
<AbstractText>Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Brittney N</ForeName>
<Initials>BN</Initials>
<Identifier Source="ORCID">0000-0001-6487-8830</Identifier>
<AffiliationInfo>
<Affiliation>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chávez-Arroyo</LastName>
<ForeName>Alfredo</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0003-2600-9305</Identifier>
<AffiliationInfo>
<Affiliation>Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Mandy I</ForeName>
<Initials>MI</Initials>
<Identifier Source="ORCID">0000-0002-8915-0296</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krasilnikov</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-9255-0936</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Louie</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Portnoy</LastName>
<ForeName>Daniel A</ForeName>
<Initials>DA</Initials>
<Identifier Source="ORCID">0000-0003-1218-2799</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI063302</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI027655</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C556062">IL10 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493486">Tlr2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051195">Toll-Like Receptor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051193">Toll-Like Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>130068-27-8</RegistryNumber>
<NameOfSubstance UI="D016753">Interleukin-10</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007108" MajorTopicYN="N">Immune Tolerance</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016753" MajorTopicYN="N">Interleukin-10</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008089" MajorTopicYN="N">Listeria monocytogenes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008088" MajorTopicYN="N">Listeriosis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010588" MajorTopicYN="N">Phagosomes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051195" MajorTopicYN="N">Toll-Like Receptor 2</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051193" MajorTopicYN="N">Toll-Like Receptors</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32634175</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1008622</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-20-00037</ArticleId>
<ArticleId IdType="pmc">PMC7340287</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 1988 Apr 1;167(4):1459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2833557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2008;40(4):586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 1990 Sep;71(1):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2120126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 12;8(12):e80743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24349012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jan 05;7:10198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2004 Oct;4(10):812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Jun 13;198(13):1847-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27114466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2007 Jun;71(2):377-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2013;785:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23456832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Feb 6;290(6):3209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2010 Mar;10(3):170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20154735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1994 Dec;62(12):5608-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7960143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2005 Apr;22(4):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15845454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Immunol. 2017 Oct 6;2(16):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28986418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 5;269(31):19701-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8051048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2011 Feb;79(2):548-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Jun;191(12):3950-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 Feb 21;11:269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32153579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 May 1;180(9):5771-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Nov;196(21):3756-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Oct 21;401(6755):811-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10548109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Jan 6;197(1):7-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12515809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2011 Sep;79(9):3596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21768286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Apr;8(1):143-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8388529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Mar;3(3):e51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Mar;7(3):e1001326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21455492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Dec 1;177(11):7551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 Jun;13(6):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23681101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Sep;5(9):e1000568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19730694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Jan;189(2):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 13;452(7184):234-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2012 Oct;33(10):488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22677184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1987 Apr 1;138(7):2266-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3104455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Aug 1;181(3):2028-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18641340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Sep 1;173(5):3392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15322203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 Feb;7(2):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2018 Aug;41:128-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29890457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Jul 23;6(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Jun 13;12(6):e1005708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27295349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Nov;74(11):6387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Immunol. 2012;113:135-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Feb 19;2:e00291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23426999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Sep 22;5(9):e12871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20877569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Dec 18;31(6):847-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 2014 Oct;26(10):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24860120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2007 Aug;9(10):1208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17719259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 May 29;23(9):2582-2594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29847790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1989 Dec 1;170(6):2141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2511268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2014 May;44(1):44-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24291017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Dec 21;8(1):2246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Aug 15;177(4):2565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1997 Mar 1;158(5):2259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9036973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Aug;184(15):4177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jan;35(2):312-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 13;287(16):13170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2011 Apr;13(4):350-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Nov 28;228(5274):855-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5477011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Nguyen, Brittney N" sort="Nguyen, Brittney N" uniqKey="Nguyen B" first="Brittney N" last="Nguyen">Brittney N. Nguyen</name>
</region>
<name sortKey="Chavez Arroyo, Alfredo" sort="Chavez Arroyo, Alfredo" uniqKey="Chavez Arroyo A" first="Alfredo" last="Chávez-Arroyo">Alfredo Chávez-Arroyo</name>
<name sortKey="Cheng, Mandy I" sort="Cheng, Mandy I" uniqKey="Cheng M" first="Mandy I" last="Cheng">Mandy I. Cheng</name>
<name sortKey="Krasilnikov, Maria" sort="Krasilnikov, Maria" uniqKey="Krasilnikov M" first="Maria" last="Krasilnikov">Maria Krasilnikov</name>
<name sortKey="Louie, Alexander" sort="Louie, Alexander" uniqKey="Louie A" first="Alexander" last="Louie">Alexander Louie</name>
<name sortKey="Portnoy, Daniel A" sort="Portnoy, Daniel A" uniqKey="Portnoy D" first="Daniel A" last="Portnoy">Daniel A. Portnoy</name>
<name sortKey="Portnoy, Daniel A" sort="Portnoy, Daniel A" uniqKey="Portnoy D" first="Daniel A" last="Portnoy">Daniel A. Portnoy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32634175
   |texte=   TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32634175" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020